
A Visual Cloud System for Parallel and Functional Programming
Teaching and Learning

VICTOR KASYANOV, ELENA KASYANOVA

Institute of Informatics Systems
Novosibirsk State University

Novosibirsk, 630090
RUSSIA

kev@iis.nsk.su

Abstract: - In this paper, a visual cloud system being under development for supporting of functional and
parallel programming teaching and learning is considered. The input language of the system is a functional
language Cloud Sisal that exposes implicit parallelism through data dependence and guarantees determinate
result as well as supports data types and operators typical for scientific calculations such as loops and arrays.
The system is aimed to provide means to write and debug Cloud-Sisal-programs on low-cost devices as well as
to translate and execute them in clouds.

Key-Words: - Computer science education; functional programming; hierarchical graph representations;
parallel programming; visual cloud system

1 Introduction
Academic research and engineering challenge both
require high performance computing, which can be
achieved through parallel programming. The
existing curricula of most universities do not
properly address the major transition from single-
core to multi-core systems and from sequential to
parallel programming. As a rule, they focus on
applying of application program interface (API)
libraries and open multiprocessing (OpenMP),
message passing interface (MPI), and compute
unified device architecture (CUDA)/GPU
techniques. This approach is useful but misses the
goal of developing students' long-term ability to
solve real-life problems by “thinking in parallel”.

We can see that the history of computing has
shown shifts from explicit to implicit programming.
In the early days, computers were programmed in
assembly language, mostly with the purpose of
utilizing the available memory space as effectively
as possible. This came at the cost of obscure,
machine-dependent, hard to maintain programs,
which were designed with high programming
efforts. High-level languages were introduced to
make programming more implicit, portable and less
machine-dependent. With the advent of massively
parallel computers and their promise of hundreds of
gigaflops, we have seen a return to the explicit
programming paradigm. Using these languages with
explicit message passing library routines as
“machine languages”, people attempt to utilize the

available processing power to the largest extent,
again at the cost of high programming effort,
machine-dependent, and hard to maintain code. A
compiler for an implicitly parallel programming
language alleviates the programmer from the task of
partitioning program and data over the massively
parallel machine.

Functional programming [1] is a programming
paradigm, which is entirely different from the
conventional model: a functional program can be
recursively defined as a composition of functions
where each function can itself be another
composition of functions or a primitive operator
(such as arithmetic operators, etc.). The programmer
need not be concerned with explicit specification of
parallel processes since independent functions are
activated by the predecessor functions and the data
dependencies of the program. This also means that
control can be distributed. Further, no central
memory system is inherent to the model since data
is not “written” in by any instruction but is “passed
from” one function to the next.

In the paper, the system CSS (Cloud Sisal
System) being under development at the Institute of
Informatics Systems is considered. It is aimed to be
an interactive visual environment for supporting of
functional and parallel programming teaching and
learning. The input language of the CSS system is a
functional language Cloud Sisal that exposes
implicit parallelism through data dependence and
guarantees determinate result. The CSS system

WSEAS TRANSACTIONS on COMPUTERS Victor Kasyanov, Elena Kasyanova

E-ISSN: 2224-2872 208 Volume 16, 2017

provides means to write and debug Cloud-Sisal-
programs regardless target architectures on low-cost
devices as well as to translate the Cloud-Sisal-
programs into optimized imperative parallel
programs, appropriate to the target execution
platforms, and then to execute them on
supercomputers in clouds.

2 The CCS System
The advancement of computer technology and the
increasing complexity of research problems are
creating the need to teach parallel programming in
higher education more effectively. Programming
massively-parallel machine is a daunting task for
any human programmer and parallelization may
even be impossible for any compiler. Instead, the
functional programming paradigm may prove to be
an ideal solution by providing an implicitly parallel
interface to the programmer.

The CSS system is intended to provide a general-
purpose user interface for a wide range of parallel
processing platforms (See Fig. 1). In our conception,
the cloud interface gives transparent ability to
execute programs on arbitrary environments. The
JavaScript client does not demand installation; small
educational programs can be executed on client
devices (computers or smart phones). The V8 server
allows the language parser and some optimizations
to be used at both client and server sides.

Fig. 1. Cloud service structure: 1, 2 and 3 – clients, 4 – cloud access

server, 5 – execution environment.

The CSS system uses a functional language
Cloud Sisal as its input language and a language of
so-called hierarchical graphs [2] as the internal
representations of Cloud-Sisal-programs.

The CSS system includes five main parts: web
interface, interpreter, graphic visualization /
debugging subsystem, optimizing cross-compiler,
cluster runtime. The interpreter is available on web
via a browser; it translates a source Cloud-Sisal-
program to its hierarchical graph representation (so-
called the first internal representation of the source

Cloud-Sisal-program) and runs it without making
actual low-level code. It is useful because in this
case a user can get any debugging information in
visual forms of hierarchical graphs. Web interface
contains also some usual parts like syntax
highlighting, persistent storage for program code,
authorization and so on.

3 Cloud Sisal Language
Functional language Sisal (Steams and Iterations in
a Single Assignment Language) is considered as an
alternative to FORTRAN language for
supercomputers [3, 4]. Compared with imperative
languages (like FORTRAN), functional languages,
such as Sisal, simplifies programmer’s work. He has
only to specify a result of calculations and it is a
compiler that is responsible for mapping an
algorithm to certain calculator architecture. In
contrast with other functional languages, Sisal
supports data types and operators typical for
scientific calculations such as loops and arrays.

At present, there are implementations of the
Sisal 1.2 language [5] for many supercomputers
(e. g., SGI, Sequent, Encore Multimax, Cray X-MP,
Cray 2, etc).

The Sisal 90 language definition [6] increases the
language's utility for scientific programming. It
includes language level support for complex values,
array and vector operations, higher order functions,
rectangular arrays, and an explicit interface to other
languages like FORTRAN and C.

The Sisal 3.2 language [7] integrates features of
Sisal 2.0 [8] and Sisal 90 versions and includes
language level support for module design, mixed
language programming, and preprocessing. The
Cloud Sisal language that has been designed as the
input language of the CSS system is based on the
Sisal 3.2 and increases the language's utility for
supporting of scientific computations and parallel
programming in clouds.

Consider, for example, a Cloud Sisal program for
matrix multiplication (Fig. 2).

The first two statements define type names for
arrays. Note that no sizes are provided, and all
Cloud Sisal aggregate data instances are
dynamically created, resized, and de-allocated at
runtime. Only the dimensionality and element types
are relevant to the type specifications.

The header for the Mult function shows that two
TwoDim arguments and three integer arguments are
expected, and one unnamed value will be returned.
The returned value is two dimensional array of
double precision reals, but again, only typing and
not sizing is specified. Name can be bound to this

WSEAS TRANSACTIONS on COMPUTERS Victor Kasyanov, Elena Kasyanova

E-ISSN: 2224-2872 209 Volume 16, 2017

returned value at the site of invocation of the
function if the programmer wishes. An invocation of
a function is semantically equivalent to the
reproduction of the function code at that site, with
appropriate argument substitution. This equivalence,
called “referential transparency” is a fundamental
property of functional languages, and is responsible
for the strengths of the Cloud Sisal language. This
strength lies in a simplified analysis process for the
compiler. Two functions can run in parallel if no
data dependency exists between the functions. The
same function with equivalent inputs will always
returns equivalent values.

type OneDim = array[double_real];
type TwoDim = array[OneDim];
function Mult (A,B:TwoDim;
 K,N,M:integer
 returns TwoDim)
 for I in 1, K cross J in 1, M
 S := for L in 1, N
 R := A[I,L]*B[L,J]
 returns value of sum R
 end for
 returns array of S
 end for
end function

Fig. 2. Cloud Sisal program for matrix multiplication.

All Cloud Sisal expressions, including whole
functions and programs, evaluate to value sets. In
the example (Fig. 2), the Mult function evaluates
one array, which is the value of the for-expression
contained in the function definition. This for-
expression is a loop construct, which is an indicator
of potential parallelism to the Cloud Sisal compiler.
This loop has an index range defined as the cross
product of two simpler ranges. This means that the
body of the loop will be instantiated as many times
as there are values in the index range, in this case
K*M, and each body instantiation will be
independent, if no data dependencies exist among
them. It should be noted that the set of independent
loop bodies can be executed in parallel or not, based
on the compiler's and the runtime system's analyses
of their costs, as well as on options and annotations
specified by the programmer. Reductions are used to
determine returning values of loops. Keyword
“returns” at the end of a loop is followed by the
name of a reduction and its parameters. For
example, in the Mult function the reduction of the
inner loop is used to summarize the all values of R
and the reduction of the outer loop is used to make
an array from all values of S.

4 Single Assigment
Cloud Sisal differs from other functional languages
and we think that this difference make Cloud Sisal
more adapted for computational tasks. First of all, it
has some usual functional language benefits like
single assignment [9]. This approach requires every
variable to be defined only once. Someone would
say that it is not an advantage because every
imperative program can be converted to SSA-form,
and of course at low-level programming it has no
difference but imagine some function and the global
variable in the language where every variable need
to be declared (we use C for example):

int g=0;
void foo(void) { g=1; }

You need to re-declare the global variable when
it is modified, but you can't make it inside the
function. Inside the compiler this program will be
converted quite easy but to write initially singe
assignment programs is not the same. You can
declare another global variable without setting any
value but it can bring more questions to the rest of
the code, we can use more complex example to
withdraw this but we wouldn't. The idea is that
single assignment is something similar to structural
programming where “goto” operator is prohibited.

5 Loops and Arrays
The Cloud Sisal language also uses arrays and loops
which is not common for a functional language, but
it is good for computation: you don’t have to worry
about the recognition of the tail recursion or the
number of iterations or matrix description which is
simpler with arrays. You can operate with i-th
element of the array in a natural way like in Fortran:

for i in 1, N repeat
 R := A[i] * B[k]
 returns array of R
end for

In functional programming every statement is a

function returning the value, the loops are the same.
Reduction is used to determine the returning value
of the loop. Keyword “returns” at the end of the
loop is followed by the name of the reduction and its
parameters.

For example, if we need to summarize the
elements in the array or the stream we use following
construction of the loop:

WSEAS TRANSACTIONS on COMPUTERS Victor Kasyanov, Elena Kasyanova

E-ISSN: 2224-2872 210 Volume 16, 2017

function sum(A: array[real]
 returns real)
 for r in A
 returns sum of r
 end for
end function

Of course, loop construction can be used without

any function declaration. Cloud Sisal is a pure
functional language, it has no side effects and any
loop contains the reduction call, also user can
implement his own reductions.

The reductions are good because its
implementation can depend on target system. When
the program is executed in single-threaded
environment it can be performed sequentially, but
when executed on multiple threads it can be
performed in parallel. Similar idea can be found in
modern library “Threading Building Blocks” by
Intel1. This library allows usage of reduction
mechanism in C++, but user can also use ordinary
loops as well. In Cloud-Sisal-programs reductions
can't be avoided.

In Cloud Sisal we have three kinds of loops:
post-conditional, pre-conditional and "for all"
(operation is applied to a set). Reductions can be
folding or generating (some aggregation function or
an array generator). Conditional loops are sequential
in general but reduction allows them to be pipelined
easier (Fig. 3).

Fig. 3. Post-conditional (for repeat) pipelined structure.

Cloud Sisal has comprehensive facilities for
defining and manipulating array values. An array
generator allows the definition of a
multidimensional object whose parts form a “tiling”
of the overall structure. Arbitrary subarray selection
is provided beyond the rectangular subsets available

1 More information can be found at
http://threadingbuildingblocks.org/

in some other notations. Many infix operations
operate element-by-element on array operands and a
useful set of functions on arrays is defined. A
subarray update facility allows safe alteration of
array values. Many applications are expressible
succinctly with these features. Array generation,
selection and update may use vector subscripts to
refer to arbitrary, non geometric sections of arrays.

6 Annotated Programming
The Cloud Sisal language supports also so-called
annotated programming and concretizing
transformations [9, 10] and includes so-called
pragma statements in the form of formalized
comments (optimizing annotations) that start with
dollar sign ‘$’ and are predicate constraints on
admissible properties of program fragments or states
of computations. In addition to restricted set of
program executions and restricted set of program
outputs some suitable criterion of program quality
can be defined by annotations, and every
concretizing transformation of an annotated
program is aimed at improving the program
according to the qualitative criterion without
disturbing the meaning of the program in the
application context defined by annotations.

forward function fact
 (n: integer
 /*$ assert=n>=1*/
 /*$ assert=_>=n*/
 returns integer)
function fact (n: integer
 returns integer)
 if n = 1 then 1
 else /*$ assert = _ > 0*/
 fact(n-1)*n
 end if
end function

Fig. 4. Cloud-Sisal-program with optimizing annotation.

According to the approach used [9, 10], any
source program is considered as a base for
constructions of a number of different specialized
programs. Every construction starts with the
annotated general-purpose program which consists
of the source program and an application context
conveyed in annotations. Some program annotations
can be formed in parallel with the development of
the source program; others are added by users and
describe a specific context of source program
applications. Then a series of annotated program
transformations is performed (either automatically
or interactively with the user), which results in a

WSEAS TRANSACTIONS on COMPUTERS Victor Kasyanov, Elena Kasyanova

E-ISSN: 2224-2872 211 Volume 16, 2017

http://threadingbuildingblocks.org/

specialized program being correct and more
qualitative for this specific context of application.

An example of optimizing annotations is an
assert pragma statement. Every expression in Cloud-
Sisal-program can be prefixed by an annotation
“assert = Boolean expression”, that can be checked
for truth after the expression evaluation during
program debugging as well as can be used in
program optimizing transformations. The result of
the expression can be denoted as the underscore
symbol “_” and if the expression is n-ary (where
n>1), then its components can be denoted as an
array with the name “_”: “_[1]”, ..., “_[n]”. In
addition, the pragma “assert = Boolean expression”
can be placed before returns keyword in procedure
declarations and can be used to control results of
this procedure after its invocation. As an example of
usage of the assert pragma statements please
consider factorial function declaration and definition
which are represented in Fig. 4.

Fig. 5. Error value propagation in “always finished computations”
semantics

Another example of optimizing annotations is a
pragma “parallel” which can be used before a case
expression in Cloud Sisal (analogous to a switch
expression in C language). This pragma can be
specified if it is known that only one test can be
true. The pragma of the form “parallel = Boolean
expression” means that only one test is true if the
specified Boolean expression is true.

7 Error Handling
Try-catch mechanism is more popular for error
handling today but this approach has conflicts with
parallel program execution. When the exception
occurs all the execution streams must be stopped,
pipeline flushed and so on. Also it is harder to keep
program determinism in the case of the parallel

execution and exception occurs. Let us consider the
following example Java-program:

try {
 for (int i=0; i<N; i++) {
 a[i]=a[i]/((i+1)%K);
 }
} catch (Exception e) {
 //display results stored in "a"
}

In this example loop iterations are independent
and can be executed in parallel. Sequential
execution will always give the same result (for the
fixed values of N and K); the result will not depend
on the executor properties as far as it remains to be
sequential. While there is no dependence between
the iterations, programming language semantics
remains to be sequential and parallelism exploration
can break this semantics or demand additional
corrections to keep it. Interpreter or parallelizing
compiler needs additional mechanism to differ
between the data before and after the exception.

In Cloud Sisal language we have “always
finished computations” semantics, which means that
execution stream will not stop on any error and
return resulting value even if the error occurs
(Fig. 5).

8 Internal Representations
The CSS system uses three internal presentations of
Cloud-Sisal-programs: IR1, IR2 and IR3.

IR1 is a language of hierarchical graphs [2] made
up simple and compound computation nodes, edges,
ports and types (See Fig. 6). Nodes correspond to
computations. Simple nodes are vertices and denote
operations such as add or divide. Compound nodes
are subgraphs and represent compound
constructions such as structured expressions and
loops. Ports are vertices that are used for input
values and results of compound nodes. Edges show
the transmission of data between simple nodes and
ports; types are associated with the data transmitted
on edges. IR1-program represents data
dependencies, with control left implicit; e. g.
iteration is represented as a compound node with
subgraphs describing generation of index values, the
body of the loop, and the packaging of results.

IR2 is an extension of IR1 but is not applicative.
It introduces operations that explicitly allocate and
manipulate memory and also introduces a new class
of operations, which are similar to IR1 nodes except
that they are told where in memory to construct their
results. Also, artificial dependence edges are added
to define additional synchronization constraints

WSEAS TRANSACTIONS on COMPUTERS Victor Kasyanov, Elena Kasyanova

E-ISSN: 2224-2872 212 Volume 16, 2017

where they may be useful. Finally, data edges can
be decorated with pragmas to specify access rights
to the data they transmit and to allow operations to
modify their inputs.

function sign(N: integer
 returns integer)
 if N > 0 then 1
 elseif N < 0 then –1 else 0
 end if
end function

Fig. 6. A function sign and its IR1-representation.

All edges in the IR2 graph are decorated by
variables (See Fig. 7) which will be the operands of
IR3 operations. Each variable has the following
attributes: a unique identifier, a unique name, a type
and an additional Boolean variable which defines
the “IsError” property. The types in IR2 and IR3
represent the types of the Cloud Sisal language
within IR2 and IR3. Each type contains additional
low-level information about objects (such as
machine representation of the type). IR2 is intended
to provide a natural and usable structure for
optimizations. During the optimization process, the
optimizations can create additional data connected
with a node, an edge or a port. The data created by
one optimization can be reused by another.

Fig. 7. IR2-representation of the function sign.

IR3 is a classical three-address code
representation with hierarchical blocks. For
example, function sign can be represented as
follows:

0 entry "function sign[integer]"
(V_1(I32) returns V_3(I32));
 {
1 V_5(I32) = V_1(I32);
2 V_5(I32) = V_1(I32);
3 V_9(I32) = 0x0(I32);
4 V_13(I32) = 0x0(I32);
5 V_7(BOOL) = (V_9(I32) < V_5(I32));
6 V_11(BOOL) = (V_5(I32) <
V_13(I32));
7 if (V_7(BOOL) == true(BOOL))
 {
10 V_15(I32) = 0x1(I32);
11 V_3(I32) = V_15(I32);
 }
 else
 {
12 if (V_11(BOOL) == true(BOOL))
 {
15 V_19(I32) = 0x1(I32);
16 V_17(I32) = - V_19(I32);
17 V_3(I32) = V_17(I32);
 }
 else
 {
18 V_21(I32) = 0x0(I32);
19 V_3(I32) = V_21(I32);
 }
 }
20 return;
 }

9 Compiler
The optimizing cross-compiler of the CSS system
consists of two main parts: front-end and back-end
compilers (Fig. 8).

The front-end compiler translates Cloud-Sisal-
modules into a monolithic IR1-program which is
used also by the interpreter and the graphic
visualization/debugging subsystem.

The back-end compiler begins with R2Gen
which produces a semantically equivalent program
in IR2.

Then the IR2Opt subsystem performs some
optimizations and concretizations on the annotated
program to produce a semantically equivalent, but
faster basic program.

After completion of the machine-independent
optimizations, the IR3Gen subsystem preallocates
array storage where compile time analysis or

WSEAS TRANSACTIONS on COMPUTERS Victor Kasyanov, Elena Kasyanova

E-ISSN: 2224-2872 213 Volume 16, 2017

compiler generated expressions executed at run time
can calculate the final size of an array. The result of
this phase is the production of a semantically
equivalent program in IR3.

The next phase of compilation (IR3Opt)
performs update-in-place analysis and restructures
some graphs to help identify at compile tune those
operations that can execute in-place and to improve
chances for in-place operation at run time when
analysis fails. It performs also some machine-
dependent optimizations and defines the desired
granularity of parallelism based on an estimate of
computational cost and various parameters that tune
analysis.

Fig. 8. The Cloud-Sisal-compiler and run-time support.

After parallelization, CodeGen generates C++ or
C# code, and the compilation can be completed
using the target machine's C++ or C# compiler.

The optimizing cross-compiler generates also a
GraphML-file with a graph which represents data
structures handled by the compiler. GraphML (or
Graph Markup Language [12]) is at present de facto
standard language for describing graphs. GraphML
is XML sublanguage and allows describing directed,
undirected, mixed, hyper, and hierarchical graphs as
well as different attributes of their elements.

It is assumed that this file generated by the cross-
compiler can be used by a user for post-mortem
visualization with the help of the Visual Graph
system [13]. The Visual Graph system can be used
to read this graph from the GraphML-file, to
visualize it and to provide a user with different
navigation tools for its visual exploration to take the
most optimal decisions.

10 Related works
New parallel language development is not popular
today; more popular is existing language extension
(sometimes it is positioned as a separate language);

such approach keeps sequential semantics problems,
but considered as the fastest both for the developer
and for the final application execution. In this
section we will not observe such extensions as
related.

The Pifagor language is currently developed at
Siberian Federal Institute [14]. This language is
optimized to dataflow graph description; syntax is
not easy to understand because it differs from
common imperative and functional languages. For
example, it has no infix operations, no loops. The
following Pifagor function performs vector
multiplication by scalar:

VecScalMult << funcdef Param
// Argument format: ((x1, x2, : xn),
y),
// where ((x1, x2, : xn) is a vector,
y – scalar
{
((Param:1,(Param:2,Param:1:|):dup):#:[
]:*) >>return
}

It is hard to compare Pifagor syntax and
constructions with Sisal because they are completely
different. Sisal has loops and arrays; we suppose it
is better for science computational tasks. According
to the articles of the Pifagor developers it is aimed
on the list processing and the conception of
unlimited parallelism scheduled as limited at
runtime.

This project has compiler and interpreter used for
scientific proposes: development of the new
scheduling algorithms and parallel programming
education.

The F# language [15] is the project in a same
direction with Sisal, but Microsoft’s developments
in a functional paradigm can’t be avoidable. As the
complexity of the systems was increased the
complexity of compiler grows and some features of
the functional languages formerly considered as
ineffective started to implement in imperative
languages.

At one hand: F# is functional ML-family
language; functional paradigm suits better for
parallel computations. At the other: it has an ability
to create any mutable indexes, non-functional calls
or dependencies, external .NET objects and
operations. It can’t be considered as single
assignment or parallel; it is hybrid, you can write
implicitly parallel and sequential programs both.
Multithreaded programming on F# is quite similar
to C# or C programming.

Not in case of the only F# but for the all
functional languages developers are trying to make

WSEAS TRANSACTIONS on COMPUTERS Victor Kasyanov, Elena Kasyanova

E-ISSN: 2224-2872 214 Volume 16, 2017

language programming available for wide range of
people but it makes language less pure and less
functional. State modification operators such as
input and output give the developer familiar ability
to process the data but makes the semantic
sequential or non-deterministic.

11 Conclusion
The project of the CSS system for supporting of
functional and parallel programming teaching and
learning is considered.

The CSS system is intended to provide means to
write and debug functional programs regardless
target architectures on low-cost devices as well as to
translate them into optimized parallel programs,
appropriate to the target execution platforms, and
then execute on high performance parallel
computers without extensive rewriting and
debugging. The CSS system can open the world of
parallel and functional programming to all students
and scientists without requiring a large investment
in new, top-end computer systems. A smaller
number of high speed computers can be shared
among all scientists because parallel development is
moved to low-end systems.

At present, the CSS system consists of
experimental versions of web interface, interpreter,
graphic visualization/debugging subsystem,
optimizing cross-compiler and cluster runtime. The
current target platform for the Cloud-Sisal-compiler
is .NET. The compiler generates the C# code. It
allows the users to perform the experimental
execution of Cloud-Sisal-programs and examine the
effectiveness of optimizing transformations applied
by the compiler.

We starts some experiments of using our system
for teaching and leaning of functional and parallel
programming as well as of optimizing compilation
and high performance computing.

The work was partially supported by the Russian
Foundation for Basic Research (grant 15-07-02029).

References:
[1] J. Backus. Can programming be liberated from

the von Neumann style? Commun. ACM,
Vol.21, No.8, 1978, pp. 613–641.

[2] V.N. Kasyanov. Methods and tools for
structural information visualization, WSEAS
Transactions on Computers, Vol. 12, No. 7,
2013, pp. 349–359.

[3] D.C. Cann. Retire Fortran?: a debate rekindled,
Commun. ACM, Vol. 34, No. 8, 1992, pp. 81–
89.

[4] J.-L. Gaudiot, T. DeBoni, J. Feo, et all. The
Sisal project: real world functional
programming, Lecture Notes in Computer
Science, Vol.1808, 2001, pp. 45–72.

[5] J. McGraw, S. Skedzielewski, S. Allan, et all.
SISAL-Streams and Iterations in a Single
Assignment Language, Language Reference
Manual: Version 1.2. Technical Report TR M-
146, University of California, Lawrence
Livermore Laboratory, March, 1985.

[6] J.T.Feo, P.J. Piller, S.K. Skedzielewski, et all.
SISAL 90. In: Proceedings of High
Performance Functional Computing, Denver,
1995, pp. 35–47,

[7] V.N. Kasyanov. Sisal 3.2: functional language
for scientific parallel programming, Enterprise
Information Systems, Vol. 7, No. 2, 2013,
pp. 227-236.

[8] D.C. Cann, J.T. Feo, A.P.W. Böhm, et all: Sisal
Reference Manual: Language Version 2.0.
Tech. Rep. Lawrence Livermore National
Laboratory, UCRL-MA-109098, Livermore,
CA, 1991.

[9] R. Cytron, J. Ferrante, B. Rosen, M. Wegman,
and K. Zadeck: Efficiently computing static
single assignment form. Transactions on
Programming Languages and Systems, Vol. 13,
No. 4, 1991, pp. 451-490.

[10] V.N. Kasyanov. Transformational approach to
program concretization, Theoretical Computer
Science, Vol. 90, No. 1, 1991, pp. 37-46.

[11] V.N. Kasyanov. A support tool for annotated
program manipulation, In: Proc. of Fifth
European Conf. on Software Maintenance and
Reengineering, IEEE Computer Society Press,
2001, pp. 85–94.

[12] U. Brandes, M. Eiglsperger, J. Lerner, and
C. Pich. Graph Markup Language (GraphML),
In: Handbook of Graph Drawing and
Visualization. CRC Press, 2013, pp. 517–541.

[13] V.N. Kasyanov, T.A. Zolotuhin. Visual Graph
– a system for visualization of big size complex
structural information on the base of graph
models, Scientific Visualization, Vol. 7, No. 4,
2015, pp. 44 – 59. (In Russian).

[14] L. Legalov: Functional language for creation of
architecture-independent parallel programs.
Computational Technologies, Vol. 10, No. 1,
2005, pp. 71-89. (In Russian).

[15] D. Syme, A. Granicz, A. Cisternino: Expert
F#3.0. Apress, 2012.

WSEAS TRANSACTIONS on COMPUTERS Victor Kasyanov, Elena Kasyanova

E-ISSN: 2224-2872 215 Volume 16, 2017

