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Abstract: - In this paper, a visual cloud system being under development for supporting of functional and 
parallel programming teaching and learning is considered. The input language of the system is a functional 
language Cloud Sisal that exposes implicit parallelism through data dependence and guarantees determinate 
result as well as supports data types and operators typical for scientific calculations such as loops and arrays. 
The system is aimed to provide means to write and debug Cloud-Sisal-programs on low-cost devices as well as 
to translate and execute them in clouds. 
 
 
Key-Words: - Computer science education; functional programming; hierarchical graph representations; 
parallel programming; visual cloud system 
 
1 Introduction 
Academic research and engineering challenge both 
require high performance computing, which can be 
achieved through parallel programming. The 
existing curricula of most universities do not 
properly address the major transition from single-
core to multi-core systems and from sequential to 
parallel programming. As a rule, they focus on 
applying of application program interface (API) 
libraries and open multiprocessing (OpenMP), 
message passing interface (MPI), and compute 
unified device architecture (CUDA)/GPU 
techniques. This approach is useful but misses the 
goal of developing students' long-term ability to 
solve real-life problems by “thinking in parallel”. 

We can see that the history of computing has 
shown shifts from explicit to implicit programming. 
In the early days, computers were programmed in 
assembly language, mostly with the purpose of 
utilizing the available memory space as effectively 
as possible. This came at the cost of obscure, 
machine-dependent, hard to maintain programs, 
which were designed with high programming 
efforts. High-level languages were introduced to 
make programming more implicit, portable and less 
machine-dependent. With the advent of massively 
parallel computers and their promise of hundreds of 
gigaflops, we have seen a return to the explicit 
programming paradigm. Using these languages with 
explicit message passing library routines as 
“machine languages”, people attempt to utilize the 

available processing power to the largest extent, 
again at the cost of high programming effort, 
machine-dependent, and hard to maintain code. A 
compiler for an implicitly parallel programming 
language alleviates the programmer from the task of 
partitioning program and data over the massively 
parallel machine. 

Functional programming [1] is a programming 
paradigm, which is entirely different from the 
conventional model: a functional program can be 
recursively defined as a composition of functions 
where each function can itself be another 
composition of functions or a primitive operator 
(such as arithmetic operators, etc.). The programmer 
need not be concerned with explicit specification of 
parallel processes since independent functions are 
activated by the predecessor functions and the data 
dependencies of the program. This also means that 
control can be distributed. Further, no central 
memory system is inherent to the model since data 
is not “written” in by any instruction but is “passed 
from” one function to the next. 

In the paper, the system CSS (Cloud Sisal 
System) being under development at the Institute of 
Informatics Systems is considered. It is aimed to be 
an interactive visual environment for supporting of 
functional and parallel programming teaching and 
learning. The input language of the CSS system is a 
functional language Cloud Sisal that exposes 
implicit parallelism through data dependence and 
guarantees determinate result. The CSS system 
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provides means to write and debug Cloud-Sisal-
programs regardless target architectures on low-cost 
devices as well as to translate the Cloud-Sisal-
programs into optimized imperative parallel 
programs, appropriate to the target execution 
platforms, and then to execute them on 
supercomputers in clouds. 
 
 
2 The CCS System 
The advancement of computer technology and the 
increasing complexity of research problems are 
creating the need to teach parallel programming in 
higher education more effectively. Programming 
massively-parallel machine is a daunting task for 
any human programmer and parallelization may 
even be impossible for any compiler. Instead, the 
functional programming paradigm may prove to be 
an ideal solution by providing an implicitly parallel 
interface to the programmer. 

The CSS system is intended to provide a general-
purpose user interface for a wide range of parallel 
processing platforms (See Fig. 1). In our conception, 
the cloud interface gives transparent ability to 
execute programs on arbitrary environments. The 
JavaScript client does not demand installation; small 
educational programs can be executed on client 
devices (computers or smart phones). The V8 server 
allows the language parser and some optimizations 
to be used at both client and server sides.  

 
Fig. 1. Cloud service structure: 1, 2 and 3 – clients, 4 – cloud access 

server, 5 – execution environment.  

The CSS system uses a functional language 
Cloud Sisal as its input language and a language of 
so-called hierarchical graphs [2] as the internal 
representations of Cloud-Sisal-programs.  

The CSS system includes five main parts: web 
interface, interpreter, graphic visualization / 
debugging subsystem, optimizing cross-compiler, 
cluster runtime. The interpreter is available on web 
via a browser; it translates a source Cloud-Sisal-
program to its hierarchical graph representation (so-
called the first internal representation of the source 

Cloud-Sisal-program) and runs it without making 
actual low-level code. It is useful because in this 
case a user can get any debugging information in 
visual forms of hierarchical graphs. Web interface 
contains also some usual parts like syntax 
highlighting, persistent storage for program code, 
authorization and so on.  
 
 
3 Cloud Sisal Language 
Functional language Sisal (Steams and Iterations in 
a Single Assignment Language) is considered as an 
alternative to FORTRAN language for 
supercomputers [3, 4]. Compared with imperative 
languages (like FORTRAN), functional languages, 
such as Sisal, simplifies programmer’s work. He has 
only to specify a result of calculations and it is a 
compiler that is responsible for mapping an 
algorithm to certain calculator architecture. In 
contrast with other functional languages, Sisal 
supports data types and operators typical for 
scientific calculations such as loops and arrays. 

At present, there are implementations of the 
Sisal 1.2 language [5] for many supercomputers 
(e. g., SGI, Sequent, Encore Multimax, Cray X-MP, 
Cray 2, etc).  

The Sisal 90 language definition [6] increases the 
language's utility for scientific programming. It 
includes language level support for complex values, 
array and vector operations, higher order functions, 
rectangular arrays, and an explicit interface to other 
languages like FORTRAN and C. 

The Sisal 3.2 language [7] integrates features of 
Sisal 2.0 [8] and Sisal 90 versions and includes 
language level support for module design, mixed 
language programming, and preprocessing. The 
Cloud Sisal language that has been designed as the 
input language of the CSS system is based on the 
Sisal 3.2 and increases the language's utility for 
supporting of scientific computations and parallel 
programming in clouds. 

Consider, for example, a Cloud Sisal program for 
matrix multiplication (Fig. 2).  

The first two statements define type names for 
arrays. Note that no sizes are provided, and all 
Cloud Sisal aggregate data instances are 
dynamically created, resized, and de-allocated at 
runtime. Only the dimensionality and element types 
are relevant to the type specifications.  

The header for the Mult function shows that two 
TwoDim arguments and three integer arguments are 
expected, and one unnamed value will be returned. 
The returned value is two dimensional array of 
double precision reals, but again, only typing and 
not sizing is specified. Name can be bound to this 
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returned value at the site of invocation of the 
function if the programmer wishes. An invocation of 
a function is semantically equivalent to the 
reproduction of the function code at that site, with 
appropriate argument substitution. This equivalence, 
called “referential transparency” is a fundamental 
property of functional languages, and is responsible 
for the strengths of the Cloud Sisal language. This 
strength lies in a simplified analysis process for the 
compiler. Two functions can run in parallel if no 
data dependency exists between the functions. The 
same function with equivalent inputs will always 
returns equivalent values. 

type OneDim = array[ double_real ]; 
type TwoDim = array[ OneDim ]; 
function Mult (A,B:TwoDim;  
               K,N,M:integer 
               returns TwoDim) 
   for I in 1, K cross J in 1, M  
      S := for L in 1, N 
              R := A[I,L]*B[L,J] 
              returns value of sum R 
           end for 
      returns array of S 
   end for  
end function 

Fig. 2. Cloud Sisal program for matrix multiplication. 

All Cloud Sisal expressions, including whole 
functions and programs, evaluate to value sets. In 
the example (Fig. 2), the Mult function evaluates 
one array, which is the value of the for-expression 
contained in the function definition. This for-
expression is a loop construct, which is an indicator 
of potential parallelism to the Cloud Sisal compiler. 
This loop has an index range defined as the cross 
product of two simpler ranges. This means that the 
body of the loop will be instantiated as many times 
as there are values in the index range, in this case 
K*M, and each body instantiation will be 
independent, if no data dependencies exist among 
them. It should be noted that the set of independent 
loop bodies can be executed in parallel or not, based 
on the compiler's and the runtime system's analyses 
of their costs, as well as on options and annotations 
specified by the programmer. Reductions are used to 
determine returning values of loops. Keyword 
“returns” at the end of a loop is followed by the 
name of a reduction and its parameters. For 
example, in the Mult function the reduction of the 
inner loop is used to summarize the all values of R 
and the reduction of the outer loop is used to make 
an array from all values of S. 
 
 

4 Single Assigment 
Cloud Sisal differs from other functional languages 
and we think that this difference make Cloud Sisal 
more adapted for computational tasks. First of all, it 
has some usual functional language benefits like 
single assignment [9]. This approach requires every 
variable to be defined only once. Someone would 
say that it is not an advantage because every 
imperative program can be converted to SSA-form, 
and of course at low-level programming it has no 
difference but imagine some function and the global 
variable in the language where every variable need 
to be declared (we use C for example): 

int g=0; 
void foo(void) { g=1; } 

You need to re-declare the global variable when 
it is modified, but you can't make it inside the 
function. Inside the compiler this program will be 
converted quite easy but to write initially singe 
assignment programs is not the same. You can 
declare another global variable without setting any 
value but it can bring more questions to the rest of 
the code, we can use more complex example to 
withdraw this but we wouldn't. The idea is that 
single assignment is something similar to structural 
programming where “goto” operator is prohibited. 
 
 
5 Loops and Arrays 
The Cloud Sisal language also uses arrays and loops 
which is not common for a functional language, but 
it is good for computation: you don’t have to worry 
about the recognition of the tail recursion or the 
number of iterations or matrix description which is 
simpler with arrays. You can operate with i-th 
element of the array in a natural way like in Fortran: 
 

for i in 1, N repeat 
  R := A[i] * B[k] 
  returns array of R  
end for 

 
In functional programming every statement is a 

function returning the value, the loops are the same. 
Reduction is used to determine the returning value 
of the loop. Keyword “returns” at the end of the 
loop is followed by the name of the reduction and its 
parameters.  

For example, if we need to summarize the 
elements in the array or the stream we use following 
construction of the loop: 
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function sum(A: array[real]  
       returns real)  
  for r in A  
  returns sum of r  
  end for  
end function  

 
Of course, loop construction can be used without 

any function declaration. Cloud Sisal is a pure 
functional language, it has no side effects and any 
loop contains the reduction call, also user can 
implement his own reductions. 

The reductions are good because its 
implementation can depend on target system. When 
the program is executed in single-threaded 
environment it can be performed sequentially, but 
when executed on multiple threads it can be 
performed in parallel. Similar idea can be found in 
modern library “Threading Building Blocks” by 
Intel1. This library allows usage of reduction 
mechanism in C++, but user can also use ordinary 
loops as well. In Cloud-Sisal-programs reductions 
can't be avoided. 

In Cloud Sisal we have three kinds of loops: 
post-conditional, pre-conditional and "for all" 
(operation is applied to a set). Reductions can be 
folding or generating (some aggregation function or 
an array generator). Conditional loops are sequential 
in general but reduction allows them to be pipelined 
easier (Fig. 3). 
 

 
Fig. 3. Post-conditional (for repeat) pipelined structure. 

Cloud Sisal has comprehensive facilities for 
defining and manipulating array values. An array 
generator allows the definition of a 
multidimensional object whose parts form a “tiling” 
of the overall structure. Arbitrary subarray selection 
is provided beyond the rectangular subsets available 

1 More information can be found at 
http://threadingbuildingblocks.org/ 

in some other notations. Many infix operations 
operate element-by-element on array operands and a 
useful set of functions on arrays is defined. A 
subarray update facility allows safe alteration of 
array values. Many applications are expressible 
succinctly with these features. Array generation, 
selection and update may use vector subscripts to 
refer to arbitrary, non geometric sections of arrays. 
 
 
6 Annotated Programming 
The Cloud Sisal language supports also so-called 
annotated programming and concretizing 
transformations [9, 10] and includes so-called 
pragma statements in the form of formalized 
comments (optimizing annotations) that start with 
dollar sign ‘$’ and are predicate constraints on 
admissible properties of program fragments or states 
of computations. In addition to restricted set of 
program executions and restricted set of program 
outputs some suitable criterion of program quality 
can be defined by annotations, and every 
concretizing transformation of an annotated 
program is aimed at improving the program 
according to the qualitative criterion without 
disturbing the meaning of the program in the 
application context defined by annotations. 

forward function fact  
     (n: integer  
     /*$ assert=n>=1*/  
     /*$ assert=_>=n*/  
     returns integer)  
function fact (n: integer  
              returns integer)  
   if n = 1 then 1 
   else /*$ assert = _ > 0*/  
      fact(n-1)*n  
   end if 
end function 

Fig. 4. Cloud-Sisal-program with optimizing annotation. 

According to the approach used [9, 10], any 
source program is considered as a base for 
constructions of a number of different specialized 
programs. Every construction starts with the 
annotated general-purpose program which consists 
of the source program and an application context 
conveyed in annotations. Some program annotations 
can be formed in parallel with the development of 
the source program; others are added by users and 
describe a specific context of source program 
applications. Then a series of annotated program 
transformations is performed (either automatically 
or interactively with the user), which results in a 
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specialized program being correct and more 
qualitative for this specific context of application. 

An example of optimizing annotations is an 
assert pragma statement. Every expression in Cloud-
Sisal-program can be prefixed by an annotation 
“assert = Boolean expression”, that can be checked 
for truth after the expression evaluation during 
program debugging as well as can be used in 
program optimizing transformations. The result of 
the expression can be denoted as the underscore 
symbol “_” and if the expression is n-ary (where 
n>1), then its components can be denoted as an 
array with the name “_”: “_[1]”, ..., “_[n]”. In 
addition, the pragma “assert = Boolean expression” 
can be placed before returns keyword in procedure 
declarations and can be used to control results of 
this procedure after its invocation. As an example of 
usage of the assert pragma statements please 
consider factorial function declaration and definition 
which are represented in Fig. 4.  

 

 
Fig. 5. Error value propagation in “always finished computations” 
semantics 

Another example of optimizing annotations is a 
pragma “parallel” which can be used before a case 
expression in Cloud Sisal (analogous to a switch 
expression in C language). This pragma can be 
specified if it is known that only one test can be 
true. The pragma of the form “parallel = Boolean 
expression” means that only one test is true if the 
specified Boolean expression is true. 
 
 
7 Error Handling 
Try-catch mechanism is more popular for error 
handling today but this approach has conflicts with 
parallel program execution. When the exception 
occurs all the execution streams must be stopped, 
pipeline flushed and so on.  Also it is harder to keep 
program determinism in the case of the parallel 

execution and exception occurs. Let us consider the 
following example Java-program: 

try { 
   for (int i=0; i<N; i++) { 
      a[i]=a[i]/((i+1)%K); 
    } 
} catch (Exception e) { 
   //display results stored in "a"  
} 

In this example loop iterations are independent 
and can be executed in parallel. Sequential 
execution will always give the same result (for the 
fixed values of N and K); the result will not depend 
on the executor properties as far as it remains to be 
sequential. While there is no dependence between 
the iterations, programming language semantics 
remains to be sequential and parallelism exploration 
can break this semantics or demand additional 
corrections to keep it. Interpreter or parallelizing 
compiler needs additional mechanism to differ 
between the data before and after the exception.  

In Cloud Sisal language we have “always 
finished computations” semantics, which means that 
execution stream will not stop on any error and 
return resulting value even if the error occurs 
(Fig. 5). 
 
 
8 Internal Representations 
The CSS system uses three internal presentations of 
Cloud-Sisal-programs: IR1, IR2 and IR3. 

IR1 is a language of hierarchical graphs [2] made 
up simple and compound computation nodes, edges, 
ports and types (See Fig. 6). Nodes correspond to 
computations. Simple nodes are vertices and denote 
operations such as add or divide. Compound nodes 
are subgraphs and represent compound 
constructions such as structured expressions and 
loops. Ports are vertices that are used for input 
values and results of compound nodes. Edges show 
the transmission of data between simple nodes and 
ports; types are associated with the data transmitted 
on edges. IR1-program represents data 
dependencies, with control left implicit; e. g. 
iteration is represented as a compound node with 
subgraphs describing generation of index values, the 
body of the loop, and the packaging of results. 

IR2 is an extension of IR1 but is not applicative. 
It introduces operations that explicitly allocate and 
manipulate memory and also introduces a new class 
of operations, which are similar to IR1 nodes except 
that they are told where in memory to construct their 
results. Also, artificial dependence edges are added 
to define additional synchronization constraints 
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where they may be useful. Finally, data edges can 
be decorated with pragmas to specify access rights 
to the data they transmit and to allow operations to 
modify their inputs. 

 
function sign(N: integer  
              returns integer) 
  if N > 0 then 1  
  elseif N < 0 then –1 else 0  
  end if 
end function 
 

 
Fig. 6. A function sign and its IR1-representation. 

All edges in the IR2 graph are decorated by 
variables (See Fig. 7) which will be the operands of 
IR3 operations. Each variable has the following 
attributes: a unique identifier, a unique name, a type 
and an additional Boolean variable which defines 
the “IsError” property. The types in IR2 and IR3 
represent the types of the Cloud Sisal language 
within IR2 and IR3. Each type contains additional 
low-level information about objects (such as 
machine representation of the type). IR2 is intended 
to provide a natural and usable structure for 
optimizations. During the optimization process, the 
optimizations can create additional data connected 
with a node, an edge or a port. The data created by 
one optimization can be reused by another. 
 

 
Fig. 7. IR2-representation of the function sign. 

IR3 is a classical three-address code 
representation with hierarchical blocks. For 
example, function sign can be represented as 
follows: 

0 entry "function sign[integer]" 
(V_1(I32) returns V_3(I32)); 
   { 
1   V_5(I32) = V_1(I32); 
2   V_5(I32) = V_1(I32); 
3   V_9(I32) = 0x0(I32); 
4   V_13(I32) = 0x0(I32); 
5   V_7(BOOL) = (V_9(I32) < V_5(I32)); 
6   V_11(BOOL) = (V_5(I32) < 
V_13(I32)); 
7   if (V_7(BOOL) == true(BOOL)) 
     { 
10     V_15(I32) = 0x1(I32); 
11     V_3(I32) = V_15(I32); 
      } 
     else 
      { 
12     if (V_11(BOOL) == true(BOOL)) 
        { 
15       V_19(I32) = 0x1(I32); 
16       V_17(I32) = - V_19(I32); 
17       V_3(I32) = V_17(I32); 
         } 
       else  
       { 
18      V_21(I32) = 0x0(I32); 
19      V_3(I32) = V_21(I32); 
       } 
      } 
20  return; 
   } 

 
 
9 Compiler 
The optimizing cross-compiler of the CSS system 
consists of two main parts: front-end and back-end 
compilers (Fig. 8). 

The front-end compiler translates Cloud-Sisal-
modules into a monolithic IR1-program which is 
used also by the interpreter and the graphic 
visualization/debugging subsystem. 

The back-end compiler begins with R2Gen 
which produces a semantically equivalent program 
in IR2.  

Then the IR2Opt subsystem performs some 
optimizations and concretizations on the annotated 
program to produce a semantically equivalent, but 
faster basic program.  

After completion of the machine-independent 
optimizations, the IR3Gen subsystem preallocates 
array storage where compile time analysis or 
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compiler generated expressions executed at run time 
can calculate the final size of an array. The result of 
this phase is the production of a semantically 
equivalent program in IR3.  

The next phase of compilation (IR3Opt) 
performs update-in-place analysis and restructures 
some graphs to help identify at compile tune those 
operations that can execute in-place and to improve 
chances for in-place operation at run time when 
analysis fails. It performs also some machine-
dependent optimizations and defines the desired 
granularity of parallelism based on an estimate of 
computational cost and various parameters that tune 
analysis. 

 
Fig. 8. The Cloud-Sisal-compiler and run-time support. 

After parallelization, CodeGen generates C++ or 
C# code, and the compilation can be completed 
using the target machine's C++ or C# compiler. 

The optimizing cross-compiler generates also a 
GraphML-file with a graph which represents data 
structures handled by the compiler. GraphML (or 
Graph Markup Language [12]) is at present de facto 
standard language for describing graphs. GraphML 
is XML sublanguage and allows describing directed, 
undirected, mixed, hyper, and hierarchical graphs as 
well as different attributes of their elements.  

It is assumed that this file generated by the cross-
compiler can be used by a user for post-mortem 
visualization with the help of the Visual Graph 
system [13]. The Visual Graph system can be used 
to read this graph from the GraphML-file, to 
visualize it and to provide a user with different 
navigation tools for its visual exploration to take the 
most optimal decisions. 
 
 
10  Related works 
New parallel language development is not popular 
today; more popular is existing language extension 
(sometimes it is positioned as a separate language); 

such approach keeps sequential semantics problems, 
but considered as the fastest both for the developer 
and for the final application execution. In this 
section we will not observe such extensions as 
related. 

The Pifagor language is currently developed at 
Siberian Federal Institute [14]. This language is 
optimized to dataflow graph description; syntax is 
not easy to understand because it differs from 
common imperative and functional languages. For 
example, it has no infix operations, no loops. The 
following Pifagor function performs vector 
multiplication by scalar: 

VecScalMult << funcdef Param 
// Argument format: ((x1, x2, : xn), 
y), 
// where ((x1, x2, : xn) is a vector, 
y – scalar 
{ 
((Param:1,(Param:2,Param:1:|):dup):#:[
]:*) >>return 
} 

It is hard to compare Pifagor syntax and 
constructions with Sisal because they are completely 
different. Sisal has loops and arrays; we suppose it 
is better for science computational tasks. According 
to the articles of the Pifagor developers it is aimed 
on the list processing and the conception of 
unlimited parallelism scheduled as limited at 
runtime. 

This project has compiler and interpreter used for 
scientific proposes: development of the new 
scheduling algorithms and parallel programming 
education.  

The F# language [15] is the project in a same 
direction with Sisal, but Microsoft’s developments 
in a functional paradigm can’t be avoidable. As the 
complexity of the systems was increased the 
complexity of compiler grows and some features of 
the functional languages formerly considered as 
ineffective started to implement in imperative 
languages.  

At one hand: F# is functional ML-family 
language; functional paradigm suits better for 
parallel computations. At the other: it has an ability 
to create any mutable indexes, non-functional calls 
or dependencies, external .NET objects and 
operations. It can’t be considered as single 
assignment or parallel; it is hybrid, you can write 
implicitly parallel and sequential programs both. 
Multithreaded programming on F# is quite similar 
to C# or C programming. 

Not in case of the only F# but for the all 
functional languages developers are trying to make 
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language programming available for wide range of 
people but it makes language less pure and less 
functional. State modification operators such as 
input and output give the developer familiar ability 
to process the data but makes the semantic 
sequential or non-deterministic. 
 
 
11  Conclusion 
The project of the CSS system for supporting of 
functional and parallel programming teaching and 
learning is considered.  

The CSS system is intended to provide means to 
write and debug functional programs regardless 
target architectures on low-cost devices as well as to 
translate them into optimized parallel programs, 
appropriate to the target execution platforms, and 
then execute on high performance parallel 
computers without extensive rewriting and 
debugging. The CSS system can open the world of 
parallel and functional programming to all students 
and scientists without requiring a large investment 
in new, top-end computer systems. A smaller 
number of high speed computers can be shared 
among all scientists because parallel development is 
moved to low-end systems. 

At present, the CSS system consists of 
experimental versions of web interface, interpreter, 
graphic visualization/debugging subsystem, 
optimizing cross-compiler and cluster runtime. The 
current target platform for the Cloud-Sisal-compiler 
is .NET. The compiler generates the C# code. It 
allows the users to perform the experimental 
execution of Cloud-Sisal-programs and examine the 
effectiveness of optimizing transformations applied 
by the compiler.  

We starts some experiments of using our system 
for teaching and leaning of functional and parallel 
programming as well as of optimizing compilation 
and high performance computing. 

The work was partially supported by the Russian 
Foundation for Basic Research (grant 15-07-02029). 
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